Primes in tuples I
نویسندگان
چکیده
We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the Elliott-Halberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance apart. Unconditionally, we prove that there exist consecutive primes which are closer than any arbitrarily small multiple of the average spacing, that is, lim inf n!1 pnC1 pn logpn D 0: We will quantify this result further in a later paper.
منابع مشابه
Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications
Let $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring $R=K[x_1,ld...
متن کاملThe Path to Recent Progress on Small Gaps between Primes
In the articles Primes in Tuples I & II ([13], [14]) we have presented the proofs of some assertions about the existence of small gaps between prime numbers which go beyond the hitherto established results. Our method depends on tuple approximations. However, the approximations and the way of applying the approximations has changed over time, and some comments in this paper may provide insight ...
متن کاملA Generalization of a Conjecture of Hardy and Littlewood to Algebraic Number Fields
We generalize conjectures of Hardy and Littlewood concerning the density of twin primes and k-tuples of primes to arbitrary algebraic number fields. In one of their great Partitio Numerorum papers [7], Hardy and Littlewood advance a number of conjectures involving the density of pairs and k-tuples of primes separated by fixed gaps. For example, if d is even, we define Pd(x) = |{0 < n < x : n, n...
متن کاملOn the Associated Primes of the generalized $d$-Local Cohomology Modules
The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary generalized local cohomology modules. Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$ are finitely generated $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...
متن کاملHigher Correlations of Divisor Sums Related to Primes Iii: Small Gaps between Primes
We use divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η > 0, a positive proportion of consecutive primes are within 4 + η times the average spacing between primes. Authors’ note. This paper was written in 2004, prior to the solution, in [8], of the problem considered ...
متن کامل